Primordial Nucleosynthesis in the Precision Cosmology Era The Annual Review of Nuclear and Particle Science Gary Steigman (2007)

Galactic Archeology Seminar Manuel Kramer

Universität Heidelberg

December 1, 2017

- 2 Fusion of the first nuclides
- Observations of the relic nuclides

Theory vs data

1 thousand million years

The Big Bang

lithium DI-9112020_03

electron

300 thousand years 3 minutes 1 second 10⁻¹⁰ seconds 10⁻³⁴ seconds 10⁻⁴³ seconds 10³² degrees 10²⁷ degrees 10¹⁵ degrees 10¹⁰ degrees 10⁹ degrees 6000 degrees positron (anti-electron) radiation particles proton neutron 18 degrees W1 heavy particles carrying meson the weak force hydrogen deuterium Source: CERN anti-quark helium

Introduction	Fusion of the first nuclides ●○○○○○	Observations of the relic nuclides	Theory vs data 00	Summary O
Fusion of Initial neutron	f the first nuclide	es		

Neutron & Proton equilibrium

• Once stable hadrons can form from the quark gluon plasma in the very early universe, neutrons and protons are in thermal equilibrium by the weak interactions:

$$p + e^{-} \leftrightarrow n + \nu_{e}$$
(1)
$$n + e^{+} \leftrightarrow p + \bar{\nu}_{e}$$

• Mass of protons is slightly lower than that of the neutrons

$$n_i/p_i = 1/7 \tag{2}$$

Introduction	Fusion of the first nuclides	Observations of the relic nuclides	Theory vs data 00	Summary O
Deuteriu	ım evolution			

• Deuterium is formed by fusion of a proton and a neutron

$$n + p \leftrightarrow d + \gamma \tag{3}$$

- Significant amounts can only built up when $kT\lesssim 80\,{
 m keV}$
- The higher the baryon density $\eta_{10} = 10^{-10} (n_{\rm B}/n_{\gamma})$, the higher the interaction rate

Introduction	Fusion of the first nuclides	Observations of the relic nuclides	Theory vs data	Summary 0
Helium-4 Nucelar fusion	• evolution			

- The starting point for all subsequent fusions is Deuterium
- Deuterium fusion is a slow reaction
- Deuterium is immediately converted to ³He and tritium
- no stable mass-5 nuclides \rightarrow bottleneck at ⁴He

Source: https://en.wikipedia.org/ wiki/Big_Bang_nucleosynthesis

Introduction	Fusion of the first nuclides ○00●00	Observations of the relic nuclides	Theory vs data 00	Summary O
Helium-4 Time depend	evolution			

- All available neutrons are incorporated in ${\rm ^4He} \rightarrow$ insensitive to baryon abundance η_{10}
- ⁴He fusion requires deuterium

- $\bullet\,$ No stable mass-5 nuclide \rightarrow larger gap from ^4He to ^7Li
- ⁷Li decays into ⁴He more easily at higher density
- ⁷Be is more efficiently fused at higher density

Introduction	Fusion of the first nuclides ○○○○○●	Observations of the relic nuclides	Theory vs data 00	Summary O
Primord	ial abundances			

- Fusion processes can be cast in differential equation
- $\bullet\,$ They only depend on η_{10}
- Higher density leads to faster fusion of Deuterium and ³He
- ⁴He abundance (Y) is only limited by available neutrons
- ⁷Li fusion is more effective at lower η₁₀, but vice versa for ⁷Be

Introduction	Fusion of the first nuclides	Observations of the relic nuclides	Theory vs data 00	Summary 0
Observat	t <mark>ions of the relic</mark> The Barvometer of Choi	nuclides		

Evolution after the Big Bang Nuceleosynthesis

- Deuterium is burned away in the collapse of prestellar gas
- Deuterium in stars is immediately fused into ³He
- \rightarrow Deuterium is only destroyed
- $\rightarrow\,$ Ideal to determine lower boundary of the relic abundance

High redshift observations as function of metallicity

- Observation of neutral gas absorption lines
- Few datapoints due to difficulties in the observation
- Expected plateau is masked by dispersion
- Value determined $10^{5}(D/H) = 2.68^{+0.27}_{-0.25}$

Observations of the relic nuclides Helium-3

Evolution after the Big Bang Nucleosynthesis

- ³He is both produced and destroyed in stars
- $\rightarrow\,$ Evolution dependent on stellar and galactic models
 - Net production or destruction should create correlation to metallicity

Introduction	Fusion of the first nuclides	Observations of the relic nuclides	Theory vs data 00	Summary O
Helium-3				

- Observation of spin flip transition in HII regions
- Limited to our galaxy due to its low intensity
- No correlation to the galaxy's metallicities gradient
- Most metal poor regions give an upper limit for the primordial 3 He abundance $10^{5}({}^{3}$ He/H) = 1.1 ± 0.2

Introduction	Fusion of the first nuclides	Observations of the relic nuclides	Theory vs data 00	Summary O
Observat	ion of the relic	nuclides		

Post Big Bang Nucleosynthesis evolution

- Significant production in stars
- Correlation between metallicity and ⁴He abundance
- $\rightarrow\,$ High redshift observations

Helium-4

 $\rightarrow\,$ Extrapolation to zero metallicity

Introduction	Fusion of the first nuclides	Observations of the relic nuclides	Theory vs data 00	Summary O
Helium	-4			
Obconvotion	as over time			

Year

Introduction	Fusion of the first nuclides	Observations of the relic nuclides	Theory vs data 00	Summary 0
Helium	-4			
Metallicity	correlation			

- Analysis HII regions of two different groups (corresponding to different symbols)
- No support for correlation between ⁴He and metallicity
- Systematic errors require more attention

Introduction	Fusion of the first nuclides	Observations of the relic nuclides	Theory vs data 00	Summary 0
Observat	ions of the relic	nuclides		

Post Big Bang Nucleosynthesis evolution

Lithium-7

- Burned away in the interior of stars
- Some ⁷Li may survive in the outer and cooler layers
- Net production by certain convective stars
- Production by spallation processes
- \Rightarrow Evolution is complex and not fully understood

Introduction	Fusion of the first nuclides	Observations of the relic nuclides ○○○○○○○●	Theory vs data 00	Summary O
Lithium	-7			
Missing Lit	hium			

- Analysis of metal poor halo stars
- [Li] = 12 + log(Li/H)
- Overall increase with metallicity
- No discernible ⁷Li plateau
- Clear gap between SBBN prediction and measured values

Introduction Fusion of the first nuclides Observations of the relic nuclides Theory vs data Summary o Barvon density constraints from observations

Baryon density constraints from observations Results in 2007

- Values determined by observations and corresponding baryon density
- Best constraint by CMB measurements
- ³He and D are in excellent agreement
- 7 Li and 4 He are both outside the 1σ range

2

7 8 9

4

6

 η_{10}

8

Cosmology lecture of M.Bartelmann WS17/18

2

3 4 5 6

Baryon-to-photon ratio n10

10-10

Introduction	Fusion of the first nuclides	Observations of the relic nuclides	Theory vs data 00	Summary •
Summary				

Theory

- Expansion rate and Temperature of the universe are well understood
- $\bullet\,$ Big Bang Nucleosynthesis fusion processes only depend on η_{10}
- Value for η_{10} can be determined from CMB
- \Rightarrow Theoretical abundances can be computed

Observation

- Both ⁴He and Deuterium observation confirm CMB measurement
- ³He is no longer used
- ⁷Li abundance is too low